

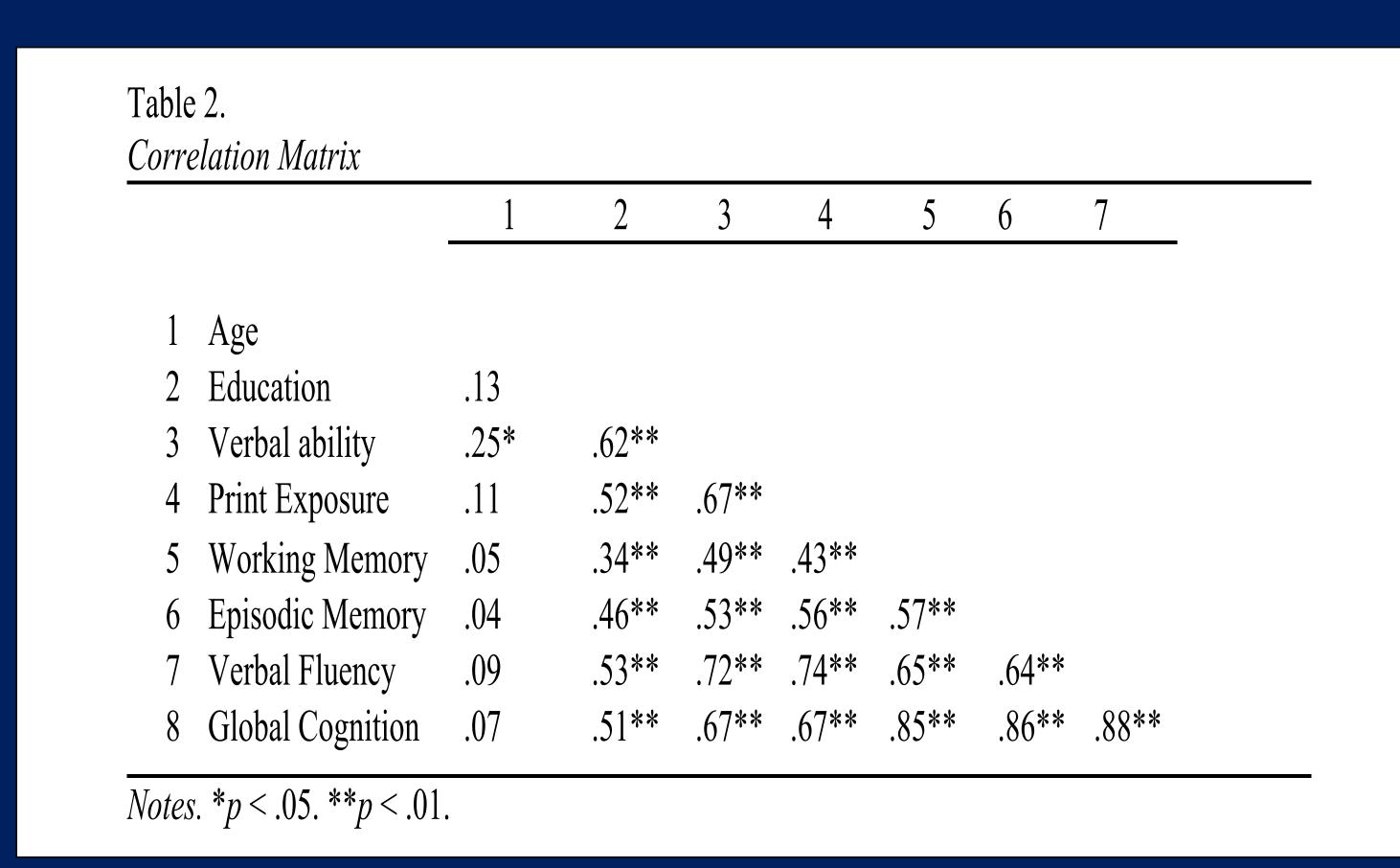
The Role of Print Exposure in Supporting Cognitive Ability Among Older Adults

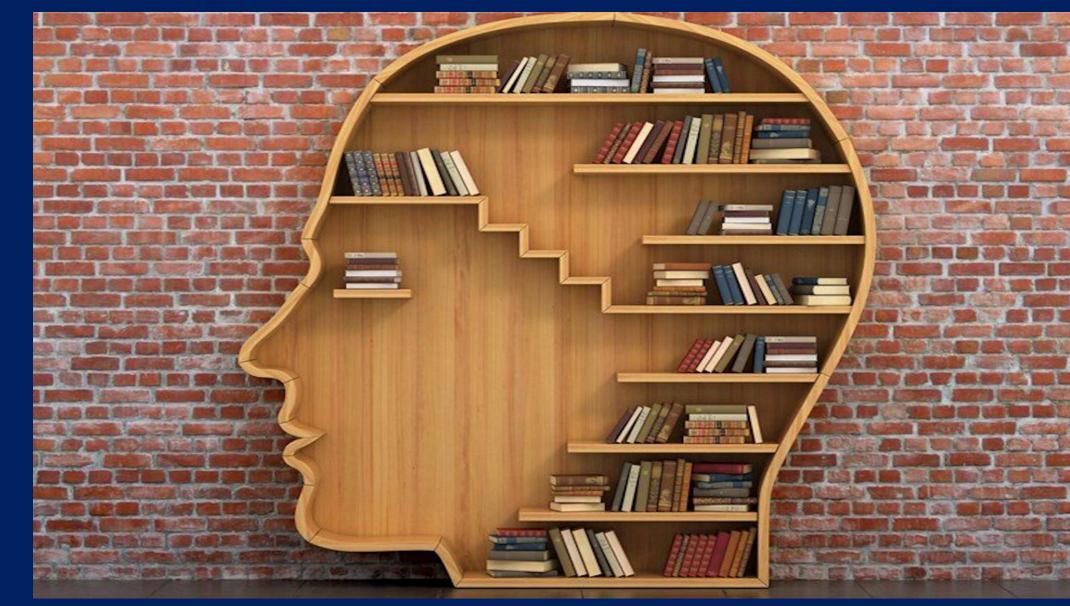
Giavanna S. McCall, Xiaomei Liu, and Elizabeth A. L. Stine-Morrow

Educational Psychology and Beckman Institute, University of Illinois at Urbana-Champaign

RATIONALE

- Older adults are vulnerable to declines in fluid cognitive abilities, like working memory, episodic memory, and verbal fluency (Salthouse, 2014).
- Prior research provides evidence that reading is a skill that provides beneficial effects that support cognition relative to growth in crystallized abilities, such as vocabulary and declarative knowledge (Stanovich, West, & Harrison, 1995).
- Reading can also exercise fluid abilities needed for creating mental representation of text (Stine-Morrow, Hussey, & Ng, 2015). Yet, little research has examined the effects of long-term reading engagement on fluid abilities in old age. The goal of this study was to fill that gap.


METHOD


Participants (N = 71, 63% female) were healthy community-dwelling older adults, between ages 60 and 79 residing in Champaign County. MoCA scores ranged from 13-30 and the young-old had lower MoCA scores relative to the old-old. Data from the pretest of an intervention contrasting a literacy intervention against an active puzzle control group are reported; because of this, participants were screened for <15hrs per week of engagement with reading and puzzles. The cognitive battery measured reading-related fluid abilities, representing working memory, episodic memory, and verbal fluency (see Table 1).

Variable		α	M	– SI
Age			68.6	5
MoCA	(Nasreddine et al., 2005)		25.2	3
Education			15.11	2
Verbal ability		.90		
	NAART (Uttl, 2002)		19.2	8
	ETS Adv Vocab (Ekstrom et al., 1976)		20.38	1
Print Exposure		.90		
_	Author Recognition Test (ART; Acheson et al., 2008)		21.79	1
	Magazine Recognition Test (Acheson et al., 2008)		20.52	
	ART - Fict (Marr & Rain, 2015)		8.82	,
	ART - NF (Marr & Rain, 2015)		4.26	4
Working Memory (Conway et al., 2005)		.79		
	Category Span		3.96	
	Operation Span		4.19	
	Reading Span			
Episodic Mem	ory	.82		
•	HVLT Total (Hester et al., 2004)		21.68	•
	HVLT Delayed (Hester et al., 2004)		7.21	•
Verbal Fluency	y	.82		
·	Category Fluency (Brickman et al., 2005)		46.66	1
	Phonemic Fluency (Brickman et al., 2005)		36.67	1
	WJ Reading Fluency (McGrew et al., 2014)		21.48	,
Global Cognition		.83		
_	Working Memory			
	Episodic Memory			
	Verbal Fluency			

RESULTS

- Print exposure had a relationship with self-reported time spent reading (r = .26, p < .05), but not with time spent with puzzles (r = .09, p > .05), which suggests criterion-related validity.
- Print exposure was correlated with all fluid ability measures, as well as the composite of Global Cognition (see Table 2).
- Controlling for verbal ability, print exposure was still significantly related to Global Cognition, an effect that was localized to verbal fluency and episodic memory (see Figure 1).

CONCLUSIONS

- Print exposure appeared to represent a valid measure of older adults' reading engagement.
- Long-term reading engagement may have cognitive benefits beyond crystallized ability in later life.

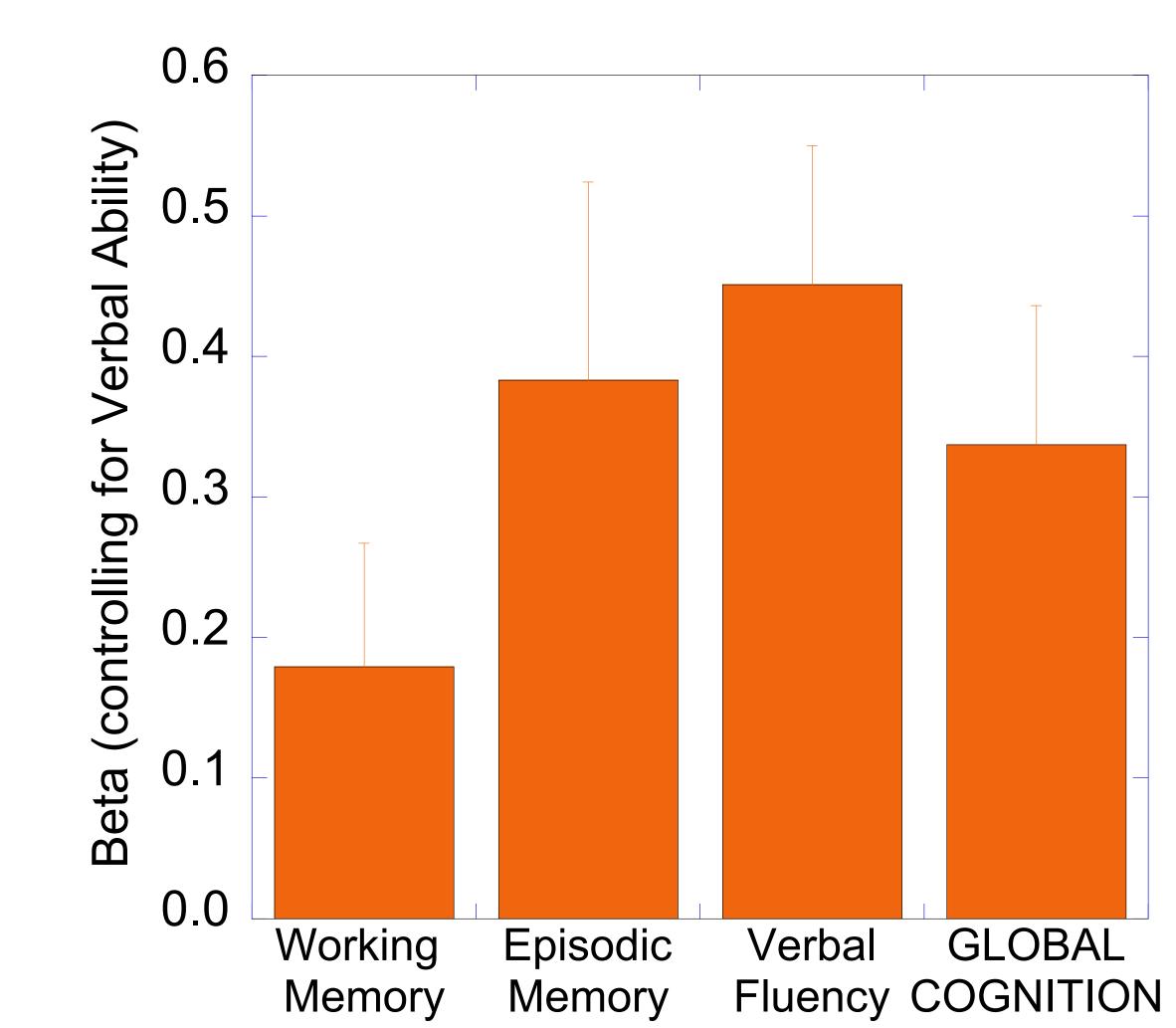


Figure 1. Unstandardized betas predicting cognitive abilities from print exposure (error bars are standard errors).

REFERENCES

- Acheson, D. J., Wells, J., & MacDonald, M. C. (2008). New and updated tests of print exposure and reading abilities in college students. *Behavior Research Methods*, 40, 278-289.
- Brickman, A. M., Paul, R. H., Cohen, R. A., Williams, L. M., MacGregor, K. L., Jefferson, A. L., . . . Gordon, E. (2005). Category and
- letter verbal fluency across the adult lifespan: Relationship to EEG theta power. *Archives of Clinical Neuropsychology, 20*, 561-573.

 Conway, A. R. A. et al. (2005). Working memory span tasks: A methodological review and user's guide. *Psychonomic Bulletin and Review, 12*, 769-786.
- Ekstrom, R. B., French, J. W., & Harmon, H. H. (1976). *Manual for the kit of factor-referenced cognitive tests*. Princeton, NJ: Educational Testing Service.
- Hester, R. L., Kinsellla, G. J., Ong, B., & Turner, M. (2004). Hopkins verbal learning test: Normative data for older Australian adults. *Australian Psychologist*, 39, 351-255.
- of Reading, 19, (6), 419-433 McGrew, K. S., LaForte, E. M., & Schrank, F. A. (2014). Technical Manual. Woodcock- Johnson IV. Rolling Meadows, IL: Riverside.

Marr, A. R., & Rain, M. (2015). Narrative fiction and expository nonfiction differentially predict verbal ability. Journal of Scientific Studies

- Nasreddine, S. Z. et al. (2005). The montreal cognitive assessment, MoCa: A brief screening tool for mild cognitive impairment. Journal of American Geriatrics Society, 53(4), 695-699.
- Salthouse, T. A. (2014). Correlates of cognitive change. *Journal of Experimental Psychology: General, 143*, 1026–1048.
- Schrank, F. A., Mather, N., & McGrew, K. S. (2014). *Woodcock-Johnson IV Tests of Cognitive Abilities*. Rolling Meadows, IL: Riverside. Stine-Morrow, E. A. L., Hussey, E. K., & Ng, S. (2015). The potential for literacy to shape lifelong cognitive health. *Policy Insights from the Behavioral and Brain Sciences*, 2, 92-
- Uttl, B. (2002). North American Adult Reading Test: Age norms, reliability, and validity. *Journal of Clinical and Experimental Neuropsychology, 24,* 1123-1137

AUTHOR NOTES

- Address correspondence to gmccall2@illinois.edu.
- We are grateful for support from the National Institute on Aging grant R21 AG052237.